skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhu, Penghao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2025
  2. Abstract Higher order topological insulators (HOTIs) are a new class of topological materials which host protected states at the corners or hinges of a crystal. HOTIs provide an intriguing alternative platform for helical and chiral edge states and Majorana modes, but there are very few known materials in this class. Recent studies have proposed Bi as a potential HOTI, however, its topological classification is not yet well accepted. In this work, we show that the (110) facets of Bi and BiSb alloys can be used to unequivocally establish the topology of these systems. Bi and Bi0.92Sb0.08(110) films were grown on silicon substrates using molecular beam epitaxy and studied by scanning tunneling spectroscopy. The surfaces manifest rectangular islands which show localized hinge states on three out of the four edges, consistent with the theory for the HOTI phase. This establishes Bi and Bi0.92Sb0.08as HOTIs, and raises questions about the topological classification of the full family of BixSb1−xalloys. 
    more » « less